Convert DataFrame column type from string to datetime, dd/mm/yyyy format

Error processing SSI file


  1. Niko

    • 2018/4/30

    If you have a mixture of formats in your date, don't forget to set infer_datetime_format=True to make life easier

    df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True)

    Source: pd.to_datetime

    or if you want a customized approach:

    def autoconvert_datetime(value):
        formats = ['%m/%d/%Y', '%m-%d-%y']  # formats to try
        result_format = '%d-%m-%Y'  # output format
        for dt_format in formats:
                dt_obj = datetime.strptime(value, dt_format)
                return dt_obj.strftime(result_format)
            except Exception as e:  # throws exception when format doesn't match
        return value  # let it be if it doesn't match
    df['date'] = df['date'].apply(autoconvert_datetime)
  2. Mekhi

    • 2015/12/19

    The strftime() method takes one or more format codes as an argument and returns a formatted string based on it. We imported 

  3. Kase

    • 2019/12/27

    You can simply use the to_pydatetime function to be more explicit, refer the following code: In [11]: ts = pd.Timestamp('2014-01-23 00:00:00', 

  4. Josiah

    • 2015/6/13

    datetime.strptime (string, format) The string parameter is the value in string format that we want to convert into date format. The format parameter is the directive specifying the format to be taken by the date after the conversion. For example, let's say we need to convert the string "9/15/18" into a datetime object.

  5. Zaiden

    • 2018/8/9

    The easiest way is to use to_datetime:

    df['col'] = pd.to_datetime(df['col'])

    It also offers a dayfirst argument for European times (but beware this isn't strict).

    Here it is in action:

    In [11]: pd.to_datetime(pd.Series(['05/23/2005']))
    0   2005-05-23 00:00:00
    dtype: datetime64[ns]

    You can pass a specific format:

    In [12]: pd.to_datetime(pd.Series(['05/23/2005']), format="%m/%d/%Y")
    0   2005-05-23
    dtype: datetime64[ns]
  6. Trace

    • 2016/9/4

    print "The type of the date is now", type(date_time_obj)

  7. Kendrick

    • 2018/3/16

    datetime. If parsing succeeded. Return type depends on input: list-like: DatetimeIndex. Series: Series of datetime64 dtype. scalar: Timestamp. In case when it is not possible to return designated types (e.g. when any element of input is before Timestamp.min or after Timestamp.max) return will have datetime.datetime type (or corresponding array

  8. Joseph

    • 2016/3/11

  9. Cohen

    • 2021/7/18

    If your date column is a string of the format '2017-01-01' you can use pandas astype to convert it to datetime.

    df['date'] = df['date'].astype('datetime64[ns]')

    or use datetime64[D] if you want Day precision and not nanoseconds



    <class 'pandas._libs.tslib.Timestamp'> the same as when you use pandas.to_datetime

    You can try it with other formats then '%Y-%m-%d' but at least this works.

  10. Ferraro

    • 2019/8/9

    Python string to datetime – strptime () We can convert a string to datetime using strptime () function. This function is available in datetime and time modules to parse a string to datetime and time objects respectively. Table of Contents [ hide]

  11. Eliel

    • 2018/12/21

  12. Tatum

    • 2021/8/21

    Python's datetime module can convert all different types of strings to a datetime object. But the main problem is that in order to do this you need to create the appropriate formatting code string that strptime can understand. Creating this string takes time and it makes the code harder to read.

  13. Raul

    • 2017/5/24

    to_numeric, pandas.to_datetime and pandas.to_timedelta as argument to apply() function to change the datatype of one or more columns to numeric, datetime and​ 

  14. Paxton

    • 2015/10/31

    I have following pandas dataframe with date column as object. ID Date Volume 0 13-02-2018 00:06 85 1 13-02-2018 00:10 70 2 13-02-2018 00:11 100 3 2018-02-13 06:30 123 4 02-13-2018 07:56 100 I want to convert it to following one format

  15. Terrance

    • 2019/1/18

    You may use this template in order to convert strings to datetime in Pandas DataFrame: df['DataFrame Column'] = pd.to_datetime(df['DataFrame 

  16. Porter

    • 2020/9/8

    pandas.to_datetime ¶ pandas.to_datetime pandas.to_timedelta Convert argument to timedelta. Examples. Assembling a datetime from multiple columns of a DataFrame

  17. Kylan

    • 2019/10/20

    to_datetime() method in pandas . The console below contains the call to convert the column. Can you 

  18. Vihaan

    • 2017/4/23

    Fortunately pandas offers quick and easy way of converting dataframe columns. In this article we can see how date stored as a string is converted to pandas date. You can see previous posts about pandas here: Pandas and Python group by and sum; Python and Pandas cumulative sum per groups; Below is the code example which is used for this conversion:

  19. Lewis

    • 2018/6/12

    In this quick guide, you'll see how to convert strings to datetime in Pandas Next, create a DataFrame to capture the above data in Python. Notice that the 'dates' were indeed stored as strings (represented by object).

  20. Stephen

    • 2020/5/22

    So how do we convert strings into datetime objects in Python? We can do this though the strptime() function. Inside of this strptime() function, we specify the string object that we want to convert as the first parameter and the format of the date that the string object is in. We set this value equal to a variable; this variable is then the converted datetime object of the string object.

  21. Greco

    • 2019/1/2

    pandas convert column to datetime pandas convert all object columns to string convert datetime column to string pandas pandas convert columns to datetime

  22. Talon

    • 2017/7/18

    import pandas as pd import datetime dataset = pd.read_csv('dataset.csv') date=dataset.apply(lambda x:['Yr']), x['Mo'], x['Dy']),axis=1) date = pd.to_datetime(date) dataset = dataset.drop(columns=['Yr', 'Mo', 'Dy']) dataset.insert(0, 'Date', date) dataset.head()

  23. Mitchell

    • 2021/2/16

    Using this module, we can easily parse any date-time string and convert it to a datetime object. Converting Strings Using datetime. The datetime module consists of 

  24. Monti

    • 2020/4/29

    datetime.strftime(Format_String) It accepts a format string as argument and converts the data in object to string according to format codes in given format string. To use this we need to import datetime class from python’s datetime module i.e. from datetime import datetime

  25. Jakari

    • 2019/11/16 › questions › convert-dataframe-column-type-fr

  26. Cesar

    • 2021/10/28

    Pandas to_datetime () (pd.to_datetime ()) Function Is Smart to Convert to Datetime pandas.to_datetime () function could do the conversion to datetime in a smart way without being given the datetime format string. It will find the string pattern automatically and smartly.

  27. Thatcher

    • 2016/3/7

  28. Franklin

    • 2016/6/14

    MySQL date format to convert to YYYY-MM-DD? Convert dd/mm/yyyy string to Unix timestamp in MySQL? MySQL - Convert YYYY-MM-DD to UNIX timestamp; How to format JavaScript date into yyyy-mm-dd format? MySQL date format DD/MM/YYYY select query? How to format a string to date in as dd-MM-yyyy using java? Java Program to format date in mm-dd

  29. Asa

    • 2019/3/9

    The method creates a formatted string from a given date , datetime or time object. Example 15: Format date using strftime().

  30. Jaxxon

    • 2018/11/25

    Converting Timestamp to using .date method:: t = pd.Timestamp('​2013-12-25 00:00:00')., 12, 25).

  31. Martinez

    • 2020/8/5

    Python format datetime The way date and time is represented may be different in different places, organizations etc. It's more common to use mm/dd/yyyy in the US, whereas dd/mm/yyyy is more common in the UK. Python has strftime () and strptime () methods to handle this.

  32. Idris

    • 2019/6/6

  33. Logan

    • 2016/5/5

    pandas.to_datetime¶ pandas.to_datetime (arg, errors = 'raise', dayfirst = False, yearfirst = False, utc = None, format = None, exact = True, unit = None, infer_datetime_format = False, origin = 'unix', cache = True) [source] ¶ Convert argument to datetime. Parameters arg int, float, str, datetime, list, tuple, 1-d array, Series DataFrame/dict-like. The object to convert to a datetime.

  34. Kingsley

    • 2021/3/29

    Pandas DataFrame Exercises, Practice and Solution: Write a Pandas program to convert DataFrame 

  35. Serra

    • 2016/5/25

    I have a dataframe with unix times and prices in it. I want to convert the index column so that it shows in human readable dates. So for instance I have date as 1349633705 in the index column but I'd want it to show as 10/07/2012 (or at least 10/07/2012 18:15). For some context, here is the code I'm working with and what I've tried already:

  36. Hoxha

    • 2019/9/14

    Using this module, we can easily parse any date-time string and convert it to a datetime object. Converting Strings Using datetime. The datetime module consists of 

  37. Finley

    • 2021/3/26

    The default format of csv is dd/mm/yyyy. When I convert it to datetime by df['Date']=pd.to_datetime(df['Date']), it change the format to mm//dd/yyyy. Then, I used df['Date'] = pd.to_datetime(df['

  38. Messiah

    • 2016/12/19

    How to add multiple columns to pandas dataframe in one assignment? Use this :- >>> datetime.datetime.strptime('2405201 READ MORE.

  39. Matthias

    • 2016/10/31

    We can pass pandas.to_numeric, pandas.to_datetime and pandas.to_timedelta as argument to apply () function to change the datatype of one or more columns to numeric, datetime and timedelta respectively.

  40. Marcel

    • 2017/1/3

    You can use the parse_dates and dayfirst arguments of pd.read_csv , see: the docs for read_csv() df = pd.read_csv('myfile.csv', 

  41. Kristopher

    • 2015/11/2

    #!/usr/bin/env python3 # coding: utf-8 import pandas as pd import datetime # create a datetime data object d_time =, 11, 12) # create a pandas Timestamp object t_stamp = pd.to_datetime('2010/11/12') # cast `datetime_timestamp` as Timestamp object and compare d_time2t_stamp = pd.to_datetime(d_time) # print to double check print(d_time) print(t_stamp) print(d_time2t_stamp) # since the conversion succeds this prints `True` print(d_time2t_stamp == t_stamp)

Comments are closed.

More Posts